
MDS4 and Project Deployments
July 28, 2005

Contact: mds-internal@mcs.anl.gov

Abstract

We describe the Monitoring and Discovery System shipped with Globus Toolkit version
4 (MDS4) and some ways in which it can be used within a wide area deployment. After a
brief overview of MDS4, this document discusses what types of data are appropriate to
use with this system, and then walks through a deployment for gathering metascheduling
data and several options for collecting software deployment information.

1 MDS4 Overview
Many Grid projects are in the process of evaluating their currently deployed monitoring
systems, most of which grew out of combining disparate local approaches. Often the
overall monitoring system is found lacking in terms of flexibility, support for standard
query interfaces, scalability, and support for Web Services interfaces.

The Globus Toolkit’s Monitoring and Discovery System (MDS) implements a standard
Web Services interface to a variety of local monitoring tools and other information
sources. As shown in Figure 1, MDS4 can be understood as a “protocol hourglass,”
defining standard protocols for information access and delivery and standard schemas for
information representation. Below the neck of the hourglass, MDS4 interfaces to
different local information sources, translating their diverse schemas into appropriate
XML schema (based on standards such as the GLUE schema whenever possible). Above
the neck of the hourglass, various tools and applications can be constructed that take
advantage of the uniform Web Services query, subscription, and notification interfaces to
those information source that MDS4 implements.

Grid computing resources and services can advertise a large amount of data for many
different use cases. MDS4 was specifically designed to address the needs of a Grid
monitoring system – one that publishes data that is of use by multiple people across
multiple administrative domains. As such, it is not an event handling system, as is
NetLogger, or a cluster monitor in its own right, as is Ganglia, but acts as a unifying layer
above these information sources. Needless to say, one needs to be careful when designing
a monitoring system to strike the right balance between quantity and timeliness of
information, on the one hand, and associated costs, on the other. MDS4 allows the user to
manage such tradeoffs by controlling just what monitoring data is published.

MDS4 builds on query, subscription, and notification protocols and interfaces defined by
the WS Resource Framework (WSRF) and WS-Notification families of specifications
and implemented by the GT4 Web Services Core.

Building on this base, we have implemented a range of information providers used to
collect information from specific sources. These components often interface to other tools
and systems, such as the Ganglia cluster monitor and the PBS and Condor schedulers (see
Table 1 for a current list).

Table 1: MDS4 information providers, existing and in progress

Source Information
Ganglia cluster monitor Basic cluster data
Hawkeye cluster monitor Basic cluster data
PBS scheduler Basic queuing data
LSF scheduler Basic queuing data
GT4 WS GRAM Job status information
GT4 Reliable File Transfer (RFT) service Data transfer status information
GT4 Replica Location Service (RLS) Replica update types, catalog data , general server status
GT4 Community Authorization Service (CAS) ServerDN, VODescription
Clumon cluster monitor (in progress) Basic cluster data
Torque scheduler (in progress) Basic queuing data
Nagios cluster monitor (in progress) Basic cluster data

MDS4 also provides two higher-level services: an Index service, which collects and
publishes aggregated information about information sources, and a Trigger service,
which collects resource information and performs actions when certain conditions are
triggered. These services are built upon a common Aggregation Framework
infrastructure that provides common interfaces and mechanisms for working with data
sources. This framework can work with arbitrarily detailed resource data and information
sources of a variety of types: mechanisms are provided to (a) query arbitrary WSRF
services (including, but not limited to, the Information Providers just listed, for resource
property information, and (b) execute a program to acquire data.

Finally, a web-based user interface called WebMDS provides a simple XSLT-transform
based visual interface to the data.

Additional information on MDS4 can be found at http://www.globus.org/toolkit/mds. See
also the tech report http://www-unix.mcs.anl.gov/~schopf/Pubs/mds4.sc.pdf.

Figure 1: The MDS4 hourglass provides a uniform query, subscription and notification interface to a
wide variety of information sources, web services, and other monitoring tools.

http://www.globus.org/toolkit/mds
http://www-unix.mcs.anl.gov/~schopf/Pubs/mds4.sc.pdf

2 Guidelines for Information Inclusion
The keys to developing a useful monitoring and discovery system—and to using a tool
such as MDS effectively—are first to identify the information that is required and second
to determine how best to make that information available.

In considering what information should be accessed using what kind of tool, we suggest
the following guidelines. If the data is a well-known set of attributes and schema will be
known before the query is made, then it makes sense to expose it using an MDS4
information provider. The data becomes a set of resource properties and can have a
common, unified interface that provides both push and pull mode access to the data,
regardless of whether its source is a service, database, file, or something else. This
includes streaming data as well.

For example, if a project uses several biology databases, information to answer the
following queries might be considered: what is the contact point for the database, what is
the load on the server for this database, what query language does it support, etc. As a
second example, some information might be kept in a database and accessed through the
MDS. For example, a monitoring system might write a well known set of attributes to a
database and a project might wish to access that data through MDS. An information
provider could be written to access the database for that data since both the database type
and the set of queries would be defined at the time of deployment.

If the need is for generic database queries, then we recommend use of OGSA-DAI,
distributed as part of GT4, as a Grid-enabled interface to relational and XML databases.
This tool enables easy interactions with heterogeneous databases over a Grid.

In general, we suggest groups discuss what data they need (what is the use case), and then
how they want to represent it (the schema), before they decide whether the data should
come from a file, database, or specialized tool.

3 MDS4 and TeraGrid: Monitoring Resource Availability
As an example of an MDS4 deployment, this section details our work with the TeraGrid
project to provide both “static” and “dynamic” data (e.g., queue lengths, architecture
types) relevant to selecting the “best” resource(s) to use for a particular job. End-users
(via a web interface), metascheduling systems, and other applications can use this
deployment to find the resource(s) that best meet their needs. A picture of the planned
TeraGrid deployment is in Figure 2.

3.1 Information Providers
Information relevant to resource selection is available from cluster monitoring, resource
management, and scheduling systems. While there is no agreement on the data needed to
make resource selection decisions, based on our previous work with scheduling systems

and analysis of several common schedulers used with queued platforms such as TeraGrid,
we have decided to use:

• 14 queuing attributes: LRMSType, LRMSVersion, DefaultGRAMVersion and
port and host, other GRAM versions and hosts and ports, TotalCPUs, Status
(up/down), TotalJobs (in the queue), RunningJobs, WaitingJobs, FreeCPUs,
MaxWallClockTime, MaxCPUTime, MaxTotalJobs, MaxRunningJobs

• 10 cluster description attributes: Unique Cluster ID, Cluster Benchmark,
ProcessorType, MainMemory size, OperatingSystem, StorageDevice,
Architecture, Number of nodes in a cluster/subcluster, TG-specific Node
properties, and Node-Queue.

MDS4
Index RFT

WS-
GRAM

Ganglia

PBS

GT4 Container

MDS4
Index

WS-
GRAM

MoabTorque

GT4 Container

Maui

MDS4
Index

WS-
GRAM

CatalinaLoadLeveler

GT4 Container

Metascheduler
Index

WebMDSMetascheduler Applications

VO IndexWebMDS Applications

Figure 2: Planned TeraGrid deployment of MDS4 to collect metascheduler information from various
sources.

In order to make this information available for all TeraGrid computers, we are both
expanding the set of data produced by the existing OpenPBS and LSF information
providers and developing new information providers for the Torque local resource
management system and the Nagios and Clumon monitoring systems.

By providing an hourglass, and therefore a level of indirection, we can easily
accommodate additional TeraGrid sites simply by adding information providers

(extending the interface at the bottom of the hour glass). No client-level change (at the
top of the hourglass) is needed to accommodate these new sites.

3.2 Working with Schedulers/Users
The end “user” for this set of data are the various “metaschedulers” that may be deployed
across TeraGrid. Four candidate systems are currently being considered: GRMS
(integration with MDS4 discussed in appendix); Warren Smith and TACC’s queue
predictor system; SDSC’s GAR system; and the Moab peer scheduling network. The data
we are collecting will be appropriate for any of these that plan to interact with a queued
system such as TeraGrid, and as TeraGrid’s metascheduling plans mature we will work
closely with these groups to identify any additional requirements.

We also plan to develop a user-friendly web interface to this data so users can better
make their own resource selection decisions and act as their own Grid-level scheduler.
We are working with both the TeraGrid portal group and to-be-named application group
to ensure that we meet user needs for the interface.

4 Software Information
As a second example of a future MDS4 end-to-end use case, we examine the need for
basic information about software. While not yet implemented in MDS4, it is in our plan
to work on as soon as we find a project collaborator that has a need for the data.

We can envision three ways in which this data could be obtained.

1) A simple configuration file could be set up on a well-known location on the
gatekeeper node for a cluster. An information provider could be written to read
that file and report the data back into MDS4. The benefit of this approach is it is
simple and expedient. The drawback is that there would be no way to verify the
validity of the configuration file. Manually maintained files such as this inevitably
become out of date.

2) In MDS2, we had a software information provider that would run version

commands for a pre-defined list of software. This approach allows for the
verification that software is actually currently installed and running on a system.
However, only software for which a user command can determine the version can
be verified this way. To employ this approach, we simply need to re-implement
the MDS2 provider to work with the MDS4 infrastructure. One difficulty is that if
the the backend node configuration is dissimilar from that of the head node
(which is often the case), we must launch a job to get valid data. This approach is
more complicated than the first, but would provide more accurate data.

3) If the project were running a piece of software such as Inca, we can develop

additional reporters for Inca to check the extended software list, and then write an
MDS4 information provider that would extract and publish needed data from the
Inca Archiver. This approach makes the best use of a current tool for determining
dynamically what software is deployed on which system, but might involve more

development time than either of the first two approaches, due to the need to
implement an interface to (for example) the Inca archiver.

Note that in each of these approaches, MDS4 acts as an hourglass, hiding the
implementation details of how information is obtained from the clients that use the data.
In fact, different sites could each obtain their information using a different approach. To
the users, they would all appear the same.

5 Additional Information

The primary source of MDS information is http://www.globus.org/toolkit/mds/. In
addition, see also:

• The tech report at http://www-unix.mcs.anl.gov/~schopf/Pubs/mds4.sc.pdf

• WebMDS documentation: http://www.globus.org/toolkit/docs/4.0/info/webmds/

• Sample WebMDS server: http://mds.globus.org:8080/webmds

• GLUE schema: http://www.cnaf.infn.it/~sergio/datatag/glue

• Ganglia: http://ganglia.sourceforge.net/

• Hawkeye: http://www.cs.wisc.edu/condor/hawkeye/

• CluMon: http://clumon.ncsa.uiuc.edu/

• NetLogger: http://www-didc.lbl.gov/NetLogger/

• Inca: http://inca.sdsc.edu

http://www.globus.org/toolkit/mds/
http://www-unix.mcs.anl.gov/~schopf/Pubs/mds4.sc.pdf
http://www.globus.org/toolkit/docs/4.0/info/webmds/
http://mds.globus.org:8080/webmds
http://www.cnaf.infn.it/~sergio/datatag/glue
http://ganglia.sourceforge.net/
http://www.cs.wisc.edu/condor/hawkeye/
http://clumon.ncsa.uiuc.edu/
http://www-didc.lbl.gov/NetLogger/
http://inca.sdsc.edu/

	MDS4 Overview
	Guidelines for Information Inclusion
	MDS4 and TeraGrid: Monitoring Resource Availability
	Information Providers
	Working with Schedulers/Users

	Software Information
	Additional Information

